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On the Higher Order Modes of Elliptical
Optical Fibers

SAA13 MICHAEL SAAD, SENIOR MEMBER, IEEE

Abstract —The point-matching numerical method is here employed for

the modal analysis of the elliptical optical fiber of any eccentricity. Good

agreement with other analytical and numerical methods is obtained. Previ-

ous disagreement in the literature is resolved.

I. INTRODUCTION

s

lNGLE-MODE ELLIPTICAL fibers are recognized as

an attractive option for optical communication and

instrumentation. To assure single-mode operation, de-

termination of the first higher order mode is of special

importance.

Few analytical methods were developed to obtain the

cutoff frequencies of higher order modes in the isotropic

homogeneous elliptical fiber of Fig. 1. Lyubimov et al. [1],

Yeh [2], Cozens and Dyott [3], and Rengarajan and Lewis

[4], [5] solved the characteristic equation in terms of Mathieu

functions. Also, most of the numerical methods developed

for the arbitrarily-shaped fiber [6] can be readily applied to

the elliptical case.

While there seems to be a serious disagreement among

the analytical methods as explained in [4], [5], [7], the em-

phasis in the numerical methods was expectedly on ef-

ficiency and accuracy of the method rather than the degree

of ellipticity of the fiber or its higher order mode content.

This paper, in contrast, concerns itself primarily with the

cutoff phenomenon of higher order modes in the elliptical

fiber in its full range of ellipticity (O< b/a< 1). This is

performed by employing the point-matching method. The

paper also attempts to resolve the above-mentioned dis-

agreement among analytical methods.

II. THE PROBLEM

There seems to be two procedures commonly followed to

compute the cutoff frequency of higher order modes. De-

scriptively, one may call them the limit procedure and the

direct procedure.

The limit procedure involves solving the fiber character-
istic equation and numerically tracing the ~ – V curve to the

cutoff point (~ = kOrz2, V= VC), where

V= b(k:+k; )l’2 (1)

k,= (k;n: –p’)’” (2a)

k2= (~2–k&; )l’2 (2b)
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Fig. 1. Two-layer elliptical fiber,

~ is the longitudinal, and kl and kz are the radial propa-

gation constants. rzl and n‘ are the refractive indexes of

the core and cladding, respectively. This procedure has two

advantages; it yields all possible higher order modes, and

the solution can be examined throughout its applicable

range of V not only at VC.A serious limitation, however, is

that the solution of the characteristic equation invariably

involves the computation of a truncated infinite determi-

nant that becomes increasingly ill-conditioned as the cutoff

point is approached. This procedure is reported in the

majority of references that deal with the fiber modal analy-

sis, including the analytical work in [2], [4], [5] and the

numerical work of this paper and of Eyges et al. [8] which

is utilized, together with other references, to verify our

curves.

The direct procedure, in contrast, seeks to reduce the

characteristic equation to a simpler form representing the

cutoff condition, thus improving the numerical condition

of the determinant. In doing so, Lyubimov et al. [1]

mathematically proved the existence of a mode type (what

they called B-branch) for which VC is determined by the

roots of the Mathieu functions Ce and Se. On the numeri-

cal techniques side, Chiang [9] developed a finite-element
method for the direct determination of VC.

In an alternative direct procedure, Cozens and Dyott [3]

reduced Yeh’s exact characteristic equation [10] into the

cutoff condition Ce ( P’) = O and provided a curve shown in

Fig. 2. That curve, however, was questionable to Citerne [7]

and Rengarajan and Lewis [4], [5], for the cutoff condition

was derived in [3] using the assumption that the elliptical

fiber can support TE and TM modes, an approximation

which is valid only in the near-circular case. Using the limit

procedure as applied to the exact characteristic equation,

[4] provided a new cutoff frequency curve, also shown in

Fig. 2, which is lower than that of Ce( V) = O, thus limiting

the fiber to a narrower bandwidth.

From [4], [5], [7]–[9], it is evidenced that the cutoff condi-

tion Ce (V)= O given by [1] and [3] is indeed a valid
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Fig. 2. Normalized cutoff frequency for odd higher order modes
(OHO~ versus b/a in an elliptical fiber. n,= 1.46, n,= 1.34.

approximation for small eccentricity. On the other hand,

the curve by [4] seems to be consistent with theoretical [8],

[9] and experimental [11] data in the range 0.45< b/a< 1.0.
For smaller b/a, however, there seems to be no confirma-

tion of either curve by experiment or any other theoretical

method.

III. POINT-MATCHING SOLUTION

In order to resolve independently such a paradox, this

author adapted Goell’s point-matching approach [12] to

the present elliptical cross section of Fig. 1. Such an

exercise was reported before for the same two-layer ellipti-

cal fiber [13], and even for the composite structure with

two elliptic boundaries [14], though in both cases only

small eccentricities were treated. In the point-matching

method, the fields are first represented by an infinite

expansion of circular harmonics, i.e.,

E=, = ~ ansin(nfl + u=).l. (klr)exp(j~z) (3a)
~=o

Hzl= ~ b.sin(nd +uk)~n(klr)exp( j~z) (3b)
~=o

inside the fiber, and

E,z = ~ ctisin(nd + ue)K. (k,r)exp(j/3z) (3c)
~=()

m

HZ2 = ~ d.sin(nf3 + u~)K.(k2r) exp(j13z) (3d)
~=o

in the cladding. Then the point-matching technique is

applied around the boundary to generate a characteristic

equation in ~, which is to be solved for possible eigenval-

ues. The details of the method are quite intricate, but since

they are described in detail for the rectangular guide case

[12] and briefly for other cross sections [13] -[16], no fur-

ther elaboration willl be given here. Our computer pro-

grams also include computation of all components of elec-

tric and magnetic fiends and plots of transverse fields. This

is necessary ‘for the classification of HE versus EH modes

and also for checking on the solution lest it does not

correspond to a physical solution, or misses a mode due to

unfavorable nwmerical conditions. As an initial check on

the accuracy of our programs, they were executed for

several of the mlany special cases reported in the literature,

e.g., [1]–[5], [8], [9], [13]. Our ~ –V curves were in good

agreement with the literature except in the cases where

there has been already serious disagreement in such liter-

ature.

By executing our programs for the case reported in [4],

namely, n ~= 1.46 and n z =1.34, we obtained the three

solid curves shown in Fig. 2. These curves belong to the

odd modes, i.e., those permitting a magnetic wall in the

x – z plane. The curves that belong to the even modes (not

shown), i.e., those permitting an electric wall in the x – z

plane, are very close to their corresponding curves of the

odd modes, ancl hardly distinguishable from them near the

limits b/a = O and 1. In all computations, the convergence

of the solution was carefully examined as N, the number of

matched points in one quadrant of the ellipse, was in-

creased from 12 to 36. Optimum N was found to vary with

b/a.

Our cutoff values shown in Fig. 2, and also our field

plots (not shown), are consistent with the expectation that

the first and third higher order modes of that symmetry

group, namely the ,,EH 01 and OEH1l, transform into the
TMO1 and EH1l modes, respectively, of the circular rod

when b\a =1, and into the TM1 mode of the infinite

symmetrical slab when b/a = O. The second higher order

mode of that group, namely the .HE21, transforms into the

HE21 mode of the circular rod, and into the TEI mode of

the infinite slab.

The fact that our curves of Fig. 2 for the ~EHol, ~HE21

and .EHII modes converge toward the slab exact solution,

namely, VC= 7r/2, may be considered as a proof of the

accuracy of our approach in the range of small b/a. As to

the range 0.45< b/a< 1.0, our ~EHol curve is in good

agreement with data given in [4], [8], [9], and our .HE21 and

~EHll curves are in good agreement with data given in

[8],[9].

IV. RESOLVING THE DISAGREEMENT BETWEEN
l)IFFERENT METHODS

The dkagreement between our .EHO1 curve and that of

[4] in the range 0< b/a <0.4 could be attributed possibly

to inaccuracy in one or both methods. Based on the

above-mentioned verification, however, the error in our
method may expectedly be of small magnitude. On the

other hand, the Mathieu function expansion of [4] and [5]
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Normalized cutoff frequency of the ~EHOl and ~HEOI modes
versus nl for an elliptical fiber. n ~ = 1.34.

seems to suffer larger truncation error as b/a decreases. In

fact, such solution, and many other numerical and analyti-

cal ones, suffer from a common source of error, namely,

the characteristic equation has a singular determinant with

some infinite elements at cutoff. The accuracy of the curve

in [4] also may be questioned according to the fact that the

.EHOI mode cannot converge toward the slab TMO mode

because each is characterized by different symmetry planes.

Another possible reason for the disagreement between

this paper and [3] on one side, and [4] and [5] on the other,

may be explained by their respective consideration of the

manner by which b and a vary. Obviously, the curves of

Fig. 2 can be obtained by varying a and holding b con-

stant, or varying b and holding a constant. Each consider-

ation results in a particular physical structure. In the limit,

where b/a = O, our case, and also that of [3], is an infinite

slab with finite thickness 2 b supporting a spectrum of TE

and TM modes with VC= n ar/2. The case of [4] and [5], in

contrast, may be that of a slab with zero thickness and

finite width 2a, i.e., a slab that vanishes to allow the

propagation of plane TEM waves with VC= O.

As to the cutoff curve Ce ( V) = O given by [3], it can now

be claimed as an approximate solution which is valid not

only in the quasi-circular case as suggested in [4] and [7],

but also in the quasi-planar case. It is exact at the two

limits, namely, the circular rod and the infinite slab. By

varying (n ~– n ~) and tracing our point-matching solution

for different b/a ratios, as shown in Fig. 3, it becomes

evident that the solution in [3], which itself is independent

of n ~ and n ~, represents an asymptotic solution for the
,HEOI (rather than the ~EHOl) mode in an elliptical dielec-

tric waveguide of any eccentricity. Such an asymptote is

approached as ( nl – n ~) increases, a case encountered in

surface-waveguide structures, rather than a weakly-guiding

optical fiber.

V. CONCLUSION

The accuracy of a point-matching approach has been

proven sufficient for the modal analysis of the elliptical

optical fiber of any eccentricity. By computing the cutoff

frequency of several higher order modes using this inde-

pendent method, a serious dispute between other methods

in the literature has been resolved. Our curves thus repre-

sent a successful attempt toward a better understanding of

the cutoff characteristics of the elliptical fiber.
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