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On the Higher Order Modes of Elliptical
Optical Fibers
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Abstract —The point-matching numerical method is here empioyed for
the modal analysis of the elliptical optical fiber of any eccentricity. Good
agreement with other analytical and numerical methods is obtained. Previ-
ous disagreement in the literature is resolved.

I. INTRODUCTION

INGLE-MODE ELLIPTICAL fibers are recognized as
San attractive option for optical communication and
instrumentation. To assure single-mode operation, de-
termination of the first higher order mode is of special
importance.

Few analytical methods were developed to obtain the
cutoff frequencies of higher order modes in the isotropic
homogeneous elliptical fiber of Fig. 1. Lyubimov et al. [1],
Yeh [2], Cozens and Dyott [3], and Rengarajan and Lewis
[4],[5] solved the characteristic equation in terms of Mathieu
functions. Also, most of the numerical methods developed
for the arbitrarily-shaped fiber [6] can be readily applied to
the elliptical case.

While there seems to be a serious disagreement among
the analytical methods as explained in [4],{5],[7], the em-
phasis in the numerical methods was expectedly on ef-
ficiency and accuracy of the method rather than the degree
of ellipticity of the fiber or its higher order mode content.

This paper, in contrast, concerns itself primarily with the
cutoff phenomenon of higher order modes in the elliptical
fiber in its full range of ellipticity (0 <b/a <1). This is
performed by employing the point-matching method. The
paper also attempts to resolve the above-mentioned dis-
agreement among analytical methods.

II. THE PROBLEM

There seems to be two procedures commonly followed to
compute the cutoff frequency of higher order modes. De-
scriptively, one may call them the limit procedure and the
direct procedure.

The limit procedure involves solving the fiber character-
istic equation and numerically tracing the 8-V curve to the
cutoff point (8 = kyn,, V="V,), where

v=o(ki+k3)"” )
k1=(k3”%*,32)1/2 (2a)
ky=(B>—kin3)"” (2b)
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Fig. 1. Two-layer elliptical fiber.

B is the longitudinal, and k, and k, are the radial propa-
gation constants. n, and n, are the refractive indexes of
the core and cladding, respectively. This procedure has two
advantages; it yields all possible higher order modes, and
the solution can be examined throughout its applicable
range of ¥ not only at V. A serious limitation, however, is
that the solution of the characteristic equation invariably
involves the computation of a truncated infinite determi-
nant that becomes increasingly ill-conditioned as the cutoff
point is approached. This procedure is reported in the
majority of references that deal with the fiber modal analy-
sis, including the analytical work in [2],[4],[5] and the
numerical work of this paper and of Eyges et al. [8] which
is utilized, together with other references, to verify our
curves.

The direct procedure, in contrast, seeks to reduce the
characteristic equation to a simpler form representing the
cutoff condition, thus improving the numerical condition
of the determinant. In doing so, Lyubimov etal. [1]
mathematically proved the existence of a mode type (what
they called B-branch) for which V, is determined by the
roots of the Mathieu functions Ce and Se. On the numeri-
cal techniques side, Chiang [9] developed a finite-element
method for the direct determination of V.

In an alternative direct procedure, Cozens and Dyott [3]
reduced Yeh’s exact characteristic equation [10] into the
cutoff condition Ce(¥) = 0 and provided a curve shown in
Fig. 2. That curve, however, was questionable to Citerne [7]
and Rengarajan and Lewis [4], [5], for the cutoff condition
was derived in [3] using the assumption that the elliptical
fiber can support TE and TM modes, an approximation
which is valid only in the near-circular case. Using the limit
procedure as applied to the exact characteristic equation,
[4] provided a new cutoff frequency curve, also shown in
Fig. 2, which is lower than that of Ce(V') = 0, thus limiting
the fiber to a narrower bandwidth.

From [4].{5].[7]-[9], it is evidenced that the cutoff condi-
tion Ce(V)=0 given by [1] and [3] is indeed a valid
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Fig. 2. Normalized cutoff frequency for odd higher order modes
(OHOM) versus b/a in an elliptical fiber. n; =1.46, n, =1.34,

approximation for small eccentricity. On the other hand,
the curve by [4] seems to be consistent with theoretical [8],
[9] and experimental {11] data in the range 0.45 < b/a <1.0.
For smaller b/a, however, there seems to be no confirma-
tion of either curve by experiment or any other theoretical
method.

III.

In order to resolve independently such a paradox, this
author adapted Goell’s point-matching approach [12] to
the present elliptical cross section of Fig. 1. Such an
exercise was reported before for the same two-layer ellipti-
cal fiber [13], and even for the composite structure with
two elliptic boundaries [14], though in both cases only
small eccentricities were treated. In the point-matching
method, the fields are first represented by an infinite
expansion of circular harmonics, i.e.,

Ea= Y aysin(nd+u,)J,(kyr)exp(jz)  (3a)
n=>0

Hy= Y bysin(nd+u,)J,(kyr)exp(jBz)  (3b)

n=0

POINT-MATCHING SOLUTION

inside the fiber, and

En= Y cysin(nf+u,)Ky(kor)exp(jBz)  (3)
0

Ho=Y d,sin(nd+u,)K,(kor)exp(jBz) (3d)
n=0

1111

in the cladding. Then the point-matching technique is
applied around the boundary to generate a characteristic
equation in B, which is to be solved for possible eigenval-
ues. The details of the method are quite intricate, but since
they are described in detail for the rectangular guide case
[12] and briefly for other cross sections [13]-[16], no fur-
ther elaboration will be given here. Our computer pro-
grams also include computation of all components of elec-
tric and magnetic fields and plots of transverse fields. This
is necessary for the classification of HE versus EH modes
and also for checking on the solution lest it does not
correspond to a physical solution, or misses a mode due to
unfavorable numerical conditions. As an initial check on
the accuracy of our programs, they were executed for
several of the many special cases reported in the literature,
e.g., [1]-[51,[81,[9],113]. Our B-V curves were in good
agreement with the literature except in the cases where
there has been already serious disagreement in such liter-
ature.

By executing our programs for the case reported in [4],
namely, n,=1.46 and n,=1.34, we obtained the three
solid curves shown in Fig, 2. These curves belong to the
odd modes, i.e., those permitting a magnetic wall in the
x—z plane. The curves that belong to the even modes (not
shown), i.e., those permitting an electric wall in the x -z
plane, are very close to their corresponding curves of the

. 0odd modes, and hardly distinguishable from them near the

limits b/a = 0 and 1. In all computations, the convergence
of the solution was carefully examined as N, the number of
matched points in one quadrant of the ellipse, was in-
creased from 12 to 36. Optimum N was found to vary with
b/a.

Our cutoff values shown in Fig. 2, and also our field
plots (not shown), are consistent with the expectation that
the first and third higher order modes of that symmetry
group, namely the EH, and ,EH,, transform into the
TM,, and EH,, modes, respectively, of the circular rod
when b/a=1, and into the TM; mode of the infinite
symmetrical slab when b/a = 0. The second higher order
mode of that group, namely the HE,,, transforms into the
HE,, mode of the circular rod, and into the TE; mode of
the infinite slab. '

The fact that our curves of Fig. 2 for the EH;, ;HE,;
and ,EH;; modes converge toward the slab exact solution,
namely, V,=#/2, may be considered as a proof of the
accuracy of our approach in the range of small 5/a. As to
the range 0.45<b/a<1.0, our ;EH, curve is in good
agreement with data given in [4],[8],[9], and our ;HE,, and
JEH,; curves are in good agreement with data given in

(81, 19].

IV. RESOLVING THE DISAGREEMENT BETWEEN
DIFFERENT METHODS

The disagreement between our ,EH, curve and that of
[4] in the range 0 < b/a < 0.4 could be attributed possibly
to inaccuracy in one or both methods. Based on the
above-mentioned verification, however, the error in our
method may expectedly be of small magnitude. On the
other hand, the Mathieu function expansion of [4] and [5]
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Fig. 3. Normalized cutoff frequency of the ;EH; and .HE; modes
versus n, for an elliptical fiber. n, =1.34.

seems to suffer larger truncation error as b/a decreases. In
fact, such solution, and many other numerical and analyti-
cal ones, suffer from a common source of error, namely,
the characteristic equation has a singular determinant with
some infinite elements at cutoff. The accuracy of the curve
in [4] also may be questioned according to the fact that the
,EH,; mode cannot converge toward the slab TM,, mode
because each is characterized by different symmetry planes.

Another possible reason for the disagreement between
this paper and [3] on one side, and [4] and [5] on the other,
may be explained by their respective consideration of the
manner by which b and a vary. Obviously, the curves of
Fig. 2 can be obtained by varying a and holding b con-
stant, or varying b and holding a constant. Each consider-
ation results in a particular physical structure. In the limit,
where b/a =0, our case, and also that of [3], is an infinite
slab with finite thickness 2b supporting a spectrum of TE
and TM modes with ¥, =n=/2. The case of [4] and [5], in
contrast, may be that of a slab with zero thickness and
finite width 2a, i.e., a slab that vanishes to allow the
propagation of plane TEM waves with V, = 0.

As to the cutoff curve Ce(V') = 0 given by [3], it can now
be claimed as an approximate solution which is valid not
only in the quasi-circular case as suggested in [4] and [7],
but also in the quasi-planar case. It is exact at the two
limits, namely, the circular rod and the infinite slab. By
varying (n, — n,) and tracing our point-matching solution
for different b/a ratios, as shown in Fig. 3, it becomes
evident that the solution in [3], which itself is independent
of n, and n,, tepresents an asymptotic solution for the
.HE,; (rather than the .EH ;) mode in an elliptical dielec-
tric waveguide of any eccentricity. Such an asymptote is
approached as (n; —n,) increases, a case encountered in
surface-waveguide structures, rather than a weakly-guiding
optical fiber.

V. CONCLUSION

The accuracy of a point-matching approach has been
proven sufficient for the modal analysis of the elliptical
optical fiber of any eccentricity. By computing the cutoff
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frequency of several higher order modes using this inde-
pendent method, a serious dispute between other methods
in the literature has been resolved. Our curves thus repre-
sent a successful attempt toward a better understanding of
the cutoff characteristics of the elliptical fiber.
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